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Abstract - In this paper we will try to analyse the influence of 
different statistical shapes and features of the technology 
parameters distributions to component behaviour, and 
consequently to the circuit response distribution. In this way it 
will be possible to create the methodology that will widen the use 
of Monte Carlo analysis and make it applicable not only to 
process variation research, but also to modelling effects of IC 
component aging, yield estimation, etc. The procedure will be 
demonstrated on the simple oscillator circuit through accessing 
process variation features of 555 timer component, and is based 
on multiple LTspice simulations, and statistical tools of the 
Matlab programme.  

Keywords – MC analysis, Process variations, Tolerance, 
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I. INTRODUCTION 

 
The process variation is one of the main factors 

examined in PVT (Process Voltage Temperature) design of 
analog circuits, that deals with numerous naturally 
occurring variations. Particularly, process variation 
represents changes of the semiconductors’ attributes during 
IC fabrication process. It can cause significant and 
affective distortion in the output performance of analog 
circuits due to characteristics mismatch. These circuit 
response variations can be efficiently predicted in order to 
avoid the misspecification of a particular circuit or device, 
reducing the overall yield.  

The device mismatch can be defined as a small random 
variation in parameters of identically designed devices, 
which occurs during the IC manufacturing process [1]. The 
basic approach used by designers is increasing the size of 
devices sensitive to mismatch. This decreases relative error 
in the desired characteristic minimizing the mismatch. 
However, smaller devices and complex circuits require 
large scale Monte Carlo (MC) simulations in order to 
investigate the way individual mismatches affect the circuit 
in whole. Hence, it is of great importance to correctly set 
up and perform simulations. 

In the field of process variation, two directions of 
research have been emerged. Exploring the effects of 
process variation is often necessary for studying the 

influence of age to component performance [2], [3], [4]. 
Second, and equally important application of the analysis 
result is in the circuit design process, where designers have 
to build a circuit which is insensitive to parameters’ 
fluctuations due to process variation [5], [6], [7], [1]. 
Special attention should be paid to the research described 
in [7], where the use of MC analysis is avoided, which is 
rare in literature and opposite to other references dealing 
with this problem. 

Statistical Analysis implies running tens to thousands of 
simulations so that designer can analyze the behaviour of 
the circuit in accordance to variations of the active 
components’ manufacturing process. Process variation data 
for a certain component are usually provided by the 
manufacturer and obtained through systematic testing and 
measurements. The results of such measurements are being 
mapped to corresponding model files. However, this 
procedure can be far more consuming in time and resources 
for complex IC components. One of the goals of this paper 
is to stress out the possibility and efficiency of using a 
simulation based method, rather than the mentioned 
procedure, for accessing process variation features of the 
IC. 

The aim of this study was to examine process variation 
features of a complex semiconductor component 
encompassed in an analog circuit. By performing detailed 
statistical analysis of the simulation results, effects of 
underlying distributions of component parameters on the 
circuit response are discussed. Also, an elaboration is given 
on the selection of measures of distribution of component 
parameters, in order to select the best fit for the particular 
purpose (process improvements, aging effects, testing of 
parametric defects, tolerance design, yield estimation, etc) 
[8]. 

In the following sections a demonstration of MC based 
statistical response distribution analysis shall be provided. 
A short description of the simple oscillator circuit and 
reasons for choosing it as a subject of the analysis method 
will be given. Next, the methodology of the statistical 
analysis, based on Spice simulations and statistical Matlab 
[9] tools, will be explained in more detail. As the result, we 
have demonstrated the analysis for the response 
distribution of a simple oscillator circuit and gave the 
explanation and conclusions of the obtained statistical 
measures. Further research will be listed in the conclusions. 

 
 



II. THE OSCILLATOR CIRCUIT 
 

Response distribution analysis is performed on an 
oscillator circuit shown in Fig. 1. The element whose 
process variation data are being examined is the NE555 
timer IC. The circuit is described in LTspice [10]. The 
subcircuit for the IC is the original Linear Technology 
copyrighted netlist NE555, with additional changes as 
explained in Section 3. 

 

 
Fig. 1.  NE555 based oscillator circuit 

 
   TABLE I 

VALUES OF ELEMENTS IN OSCILLATOR CIRCUIT 
Circuit element Value 

R1  5 kΩ 
R2 3 kΩ 
R3 1 kΩ 
C1 0.15 µF 
C2 0.01 µF 
VCC 15 V 

 
The oscillator is an astable multivibrator generating 

rectangular periodic output signal. This circuit appears 
suitable for response analysis, since it generates a single 
scalar output value, which, in fact, is the fundamental 
frequency of the output signal; the waveform itself is not 
relevant to the analysis. Since the behaviour of the circuit 
relies on charging the capacitor C1 through resistors R1 and 
R2, and discharging through R2, these are the elements that 
define the output frequency as in Eq. (1): 
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where f is the working frequency, and resistances R1 and R2 
and capacitance C1 are values of circuit elements according 
to Fig. 1. Values of all the elements for the designed 
oscillator are listed in Table I. The corresponding 
frequency should be 872.7273 Hz. 

However, after Spice simulation was performed, it was 

observed that due to specific component modelling the 
working frequency is 928.79 Hz. This value is taken as 
nominal in regard of the latter statistical analysis. 
 

III. METHODOLOGY OF STATISTICAL ANALYSIS 
 
The first step in analysis of the described circuit is 

performing MC simulations. Several groups of data are 
acquired. Namely, the output signal of the circuit is 
generated in LTspice for 1000 simulations per each set of 
parameters. These parameters are: the tolerance T of 
passive elements of the NE555 Spice model, and the type 
of the statistical distribution, from which the values of 
these elements are generated. Since the most common 
types of distributions used in MC analysis are uniform [5], 
[6] and Gaussian [1], they both are implemented for the 
purpose of this paper. In the case of Gaussian distribution, 
the tolerance T implies that the variance of the distribution 
is σ2=(T/100)2, where T is expressed in percents. The mean 
of the distribution is the nominal value of the Spice element 
which is the part of the original netlist. In the case of the 
uniform distribution, T is in fact the tolerance, i.e. maximal 
relative distance between the generated value and the 
center of the distribution. The circuit displayed in Fig. 1 is 
implemented in LTspice with commands for transient MC 
simulations. Formulae for random number generation 
according to the described distributions are also included in 
the Spice netlist. For different types of distributions, 
separate netlists are extracted. Namely, the generation of 
passive elements’ values for timer model is defined by the 
type of underlying distribution. On the other hand, values 
of external elements of the oscillator circuit are fixed. 
These include resistances R1, R2 and R3, capacitances C1 
and C2 and DC supply voltage VCC. 

Finally, a thousand output signals with the duration of 
50ms (approximately 46.5 periods of oscillation) are 
generated for two types of distributions and and three 
particular tolerance values: T=2%, T=5% and T=10%. 
Consequently, these results are imported in Matlab for 
further statistical processing. A script has been written in 
order to calculate the fundamental frequency and transform 
sets of output signals into sets of frequency values. The 
frequency is derived by calculating the discrete Fourier 
transform (using FFT algorithm) and finding the location of 
the maximal amplitude component in the spectrum. In 
order to achieve good accuracy, some additional HP 
filtering was implemented. 

After all the frequencies are acquired, significant 
statistical quantities are calculated for each of 6 sets. 
Namely, several central moments are estimated, which, in 
compliance with [11],  can be defined as in (2): 

 
 [( [ ]) ]n

n E X E Xµ = −  (2) 
 
where µn stands for nth central moment, X denotes the 
random variable, E is the expectation operator (E[X] is the 



mean, i.e. the first moment of X), whereas n can have 
values 2, 3 and 4, respectively. Sample estimation is 
performed for the lowest four central moments, i.e. mean, 
variance, skewness and kurtosis. Used sample estimators 
are unbiased. 

Empirical PDFs (probability density functions) were 
calculated next (histograms and kernel-smoothing density 
estimated functions), and compared to known mathematical 
distributions. Different information criteria was used to fit 
numerous distributions to generated data, and each gave the 
best fit with its minimal value. The used criteria are: 
Bayesian Information Criterion (BIC), Akaike Information 
Criterion (AIC), Akaike Information Criterion with 
correction for finite sample sizes (AICc), and negative log 
likelihood (NLogL). The implemented algorithm results in 
different best fits for cases of Gaussian and uniform 
element values distribution. 

 
IV. ANALYSIS RESULTS 

 
Tables II and III contain unbiased estimates of the four 

lowest central moments of the response distribution. Table 
II considers the Gaussian random generation, whereas 
Table III considers the uniform. The simulation of the 
nominal NE555 model gives the frequency of 928.79Hz. 
However, results from Table III show the relative error of 
the frequency mean is around 2% for all tolerances (the 
estimated mean is between 910Hz and 911Hz). It can be 
noticed that the estimated mean increases with the 
tolerance when Gaussian generation is used. According to 
the chosen underlying distribution for passive elements, it 
is clear that in general, means and variance estimates are 
greater in Table II than in Table III. It can be concluded 
that Gaussian MC analysis represent the worse one in 
comparison to the uniform MC. 

 
   TABLE II 
ESTIMATION OF MOMENTS OF RESPONSE DISTRIBUTION UNDER 
GAUSSIAN DISTRIBUTION FOR PASSIVE ELEMENTS GENERATION 
tolerance T=2% T=5% T=10% 
moment order 
1 (mean) 911.272387 913.097827 920.208811 
2 (variance) 610.489362 3643.53864 15206.2522 
3 (skewness) 0.04797167 0.17813189 0.46685908 
4 (kurtosis) 3.04642211 2.88281022 3.07880775 

 
   TABLE III 
ESTIMATION OF MOMENTS OF RESPONSE DISTRIBUTION UNDER 
UNIFORM DISTRIBUTION FOR PASSIVE ELEMENTS GENERATION 

tolerance T=2% T=5% T=10% 
moment order 
1 (mean) 910.936195 910.633842 910.840261 
2 (variance) 134.645217 587.226402 2269.23186 
3 (skewness) -0.2468981 0.06193966 0.11390945 
4 (kurtosis) 3.14433509 2.57091046 2.46468484 

 
Data in Tables II and III correspond to Figs. 2 and 3 

where kernel-smoothing PDF estimates of each set of 
frequencies is plotted. Conclusions derived from results of 
mean and variance are illustrated in these plots. Also, 
skewness and kurtosis are sometimes easier to examine 
visually. Namely, uniform based data show response 
distributions oriented more to the left, and Gaussian base to 
the right, which is confirmed both with plots and skewness 
estimates. However, skewness analysis only makes sense 
for unimodal distributions. It is also interesting that at 
lower tolerances T, response distributions tend to be 
multimodal and their PDFs show several local extremals, 
which is observable in Figs. 2 and 3. 

 

 
Fig. 2.  Kernel-smoothing PDF estimate for tolerance values of 

2%, 5% and 10% in the case of Gaussian distribution based 
generation of passive model elements 

 

 
Fig. 3.  Kernel-smoothing PDF estimate for tolerance values of 

2%, 5% and 10% in the case of uniform distribution based 
generation of passive model elements 

 
After estimation of central moments, the best fit for 

response distributions should be determined next. For each 



set of frequencies information criteria are calculated in 
order to check if the data comes from certain distributions. 
The investigated distributions are: generalized extreme 
value, Birnbaum-Saunders, inverse Gaussian, log-normal, 
gamma, Nakagami, Rician, normal (Gaussian), t location-
scale, log-logistic, logistic, Weibull, extreme value, 
Rayleigh and exponential distributions [11], [12]. The 
calculated criteria for sorting the fits were: NLogL, AIC, 
AICc and BIC. Examples of fitting can be seen in Figs. 4 
and 5. Fig. 4 shows normalized histogram (empirical PDF) 
and two best continuous PDF fits (generalized extreme 
value and inverse Gaussian), according to AIC, in the case 
of Gaussian generation and T=10%. Fig. 5 shows 
normalized histogram (empirical PDF) and two best 
continuous PDF fits (generalized extreme value and 
Birnbaum-Saunders), according to AIC, in the case of 
uniform generation and T=10%. Plotting more fits at the 
same time makes the figure unclear since PDFs differ 
slightly. 

The results of the best fits for each set of data and each 
criterion are listed in Table IV. The letter G stands for the 
Gaussian based generation of passive elements, whereas 
the letter U stands for uniform one. Abbreviations are used 
for distributions names so that the table can be more 
legible. These are: Γ for gamma, GEV for generalized 
extreme value, BS for Birnbaum-Saunders, IG for inverse 
Gaussian, TLOC for t location-scale and R for Rician. 

 
   TABLE IV 

BEST FIT RESPONSE DISTRIBUTIONS FOR EACH SET OF FREQUENCIES 
AND EACH CRITERION 

criterion NLogL AIC AICc BIC 
dataset 
T=2%, G Γ Γ Γ Γ 
T=5%, G GEV BS BS BS 
T=10%, G GEV GEV GEV IG 
T=2%, U TLOC R R R 
T=5%, U GEV GEV GEV GEV 
T=10%, U GEV GEV GEV GEV 

 
Comparing the results for AIC and AICc leads to an 

observation that all the fits for these two criteria are the 
same. This confirms the fact that the sample size of 1000 
taken in provided analysis in this paper is large enough to 
derive statistical conclusions. 

Also, it is of great importance to look at results of AIC 
and BIC. Namely, these criteria are essentially different. 
AIC is asymptotically optimal in terms of average square 
error, whereas BIC has the consistency property (it 
converges to the true model for larger sample sizes) [13]. 
However, these differences can be negligible considering 
presented results. The only case in which the type of best 
fit distribution is different according to AIC and BIC is the 
case of T=10%, G. The compliance of AIC and BIC is 
particularly emphasized in the case of uniform based 
generation and lower tolerances. 

 

 
Fig. 4.  Normalized histogram and two best fits for response 

distribution according to AIC at T=10% in the case of Gaussian 
distribution based generation of passive model elements 

 

 
Fig. 5.  Normalized histogram and two best fits for response 

distribution according to AIC at T=10% in the case of uniform 
distribution based generation of passive model elements 

 
The best fits depend greatly on the value of tolerance T, 

especially in the case of Gaussian generation. However, 
generalized extreme value distribution is the most common 
best fit considering all cases. That is why GEV can be a 
reasonable assumption for response distribution under 
process variation of NE555, e.g. used in component aging 
analysis as in [2] and [4]. 
 

V. CONCLUSION 
 
In this paper a methodology of MC based statistical 

analysis of an oscillator circuit has been described. Several 
significant conclusions were inferred through 
comprehensive examination of results. Those are referred 
to accessing process variation features of ICs. First, it was 
shown that, due to mapping of fabrication parameters to 
elements of the IC Spice model, effects of component’s 



process variation can be inspected by random generation of 
passive elements of the model during MC simulations and 
analysis of the response distribution. Further work can be 
focused on similar analysis including generation of other 
Spice model parameters beside passive elements’ values. In 
addition, this paper provides an elaboration on the 
statistical process of generation in the sense of determining 
the proper type of distribution. 

Agreement between results of best fits for response 
distribution calculated using different information criteria 
implies the acceptance of an assumption of component 
behaviour under process variation in further IC analysis. 
Namely, best fit for circuit response distribution can be 
used as assumed and analyzed component’s process 
variation distribution. However, the correct determination 
of the assumption requires considering parameters of 
random number generation included in MC analysis. 

Further research on the subject can be oriented towards 
the justification of proposed assumption in the process 
variation-aware aging analysis [2], [3], [4]. In this way, the 
analysis of these two equally important factors of system 
and component performance would be significantly 
facilitated. 
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